A Tri-Role Topic Model for Domain-Specific Question Answering

نویسندگان

  • Zongyang Ma
  • Aixin Sun
  • Quan Yuan
  • Gao Cong
چکیده

Stack Overflow and MedHelp are examples of domainspecific community-based question answering (CQA) systems. Different from CQA systems for general topics (e.g., Yahoo! Answers, Baidu Knows), questions and answers in domain-specific CQA systems are mostly in the same topical domain, enabling more comprehensive interaction between users on fine-grained topics. In such systems, users are more likely to ask questions on unfamiliar topics and to answer questions matching their expertise. Users can also vote answers based on their judgements. In this paper, we propose a Tri-Role Topic Model (TRTM) to model the tri-roles of users (i.e., as askers, answerers, and voters, respectively) and the activities of each role including composing question, selecting question to answer, contributing and voting answers. The proposed model can be used to enhance CQA systems from many perspectives. As a case study, we conducted experiments on ranking answers for questions on Stack Overflow, a CQA system for professional and enthusiast programmers. Experimental results show that TRTM is effective in facilitating users getting ideal rankings of answers, particularly for new and less popular questions. Evaluated on nDCG, TRTM outperforms state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Embedded Question Reuse in Question Answering

The investigation presented in this paper is a novel method in question answering (QA) that enables a QA system to gain performance through reuse of information in the answer to one question to answer another related question. Our analysis shows that a pair of question in a general open domain QA can have embedding relation through their mentions of noun phrase expressions. We present methods f...

متن کامل

A New Statistical Model for Evaluation Interactive Question Answering Systems Using Regression

The development of computer systems and extensive use of information technology in the everyday life of people have just made it more and more important for them to make quick access to information that has received great importance. Increasing the volume of information makes it difficult to manage or control. Thus, some instruments need to be provided to use this information. The QA system is ...

متن کامل

Special Section on Restricted-Domain Question Answering Question Answering in Restricted Domains: An Overview

Automated question answering has been a topic of research and development since the earliest AI applications. Computing power has increased since the first such systems were developed, and the general methodology has changed from the use of hand-encoded knowledge bases about simple domains to the use of text collections as the main knowledge source over more complex domains. Still, many researc...

متن کامل

An Open Domain Topic Prediction Model for Answer Selection

We present an open domain topic prediction model for the answer selection task. Different from previous unsupervised topic modeling methods, we automatically extract high quality and large scale 〈sentence, topic〉 pairs from Wikipedia as labeled data, and train an open domain topic prediction model based on convolutional neural network, which can predict the most possible topics for each given i...

متن کامل

Using Generalized Language Model for Question Matching

Question and answering service is one of the popular services in the World Wide Web. The main goal of these services is to finding the best answer for user's input question as quick as possible. In order to achieve this aim, most of these use new techniques foe question matching. . We have a lot of question and answering services in Persian web, so it seems that developing a question matching m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015